
To appear in the proceedings of NPAR2000

Artistic Silhouettes: A Hybrid Approach

J.D. Northrup and Lee Markosian

Brown University, Providence, RI 02912

Abstract

We present a new algorithm for rendering silhouette outlines of 3D
polygonal meshes with stylized strokes. Rather than use silhouette
edges of the model directly as the basis for drawing strokes, we
first process the edges in image space to create long, connected
paths corresponding to visible portions of silhouettes. The result-
ing paths have the precision of object-space edges, but avoid the
unwanted zig-zagging and inconsistent visibility of raw silhouette
edges. Our hybrid screen/object space approach thus allows us to
apply stylizations to strokes that follow the visual silhouettes of an
object. We describe details of our OpenGL-based stylized strokes
that can resemble natural media, but render at interactive rates. We
demonstrate our technique with the accompanying still images and
animations rendered with our technique.

CR Categories and Subject Descriptors: I.3.3 [Computer
Graphics]: Picture/Image Generation - Display algorithms

Additional Key Words: Strokes, non-photorealistic rendering

1 Introduction

The outline, or silhouette, of a shape is often one of its most strik-
ing features. Our work attempts to render attractive silhouette out-
lines for 3D geometry in real-time, creating brush-strokes resem-
bling natural media along well-chosen paths around each object.
This breaks down into three distinct phases. First, we must deter-
mine where the silhouette edges are. Because silhouettes are inher-
ently view-dependent, we have to find them every time the scene
or camera changes. Second, we need to choose where we want to
place each stroke. We want to pick paths that will look good and
remain as consistent as possible from one frame to the next. Third,
we draw each stroke in a style defined by the user. This last step
should be flexible enough to enable the user to achieve almost any
artistic goals she may have in mind.

In Section 2, we review several known silhouette detection algo-
rithms to address the first phase. The remainder of this paper fo-
cuses on the second two phases. Section 5 describes our algorithm
for determining stroke paths, and Section 6 explains our artistic
stroke-rendering framework for producing final images.

Figure 1 An example of an ink-wash style rendered with our algorithm.

2 Silhouette Edge Detection

Our system begins with 3D scenes consisting of standard triangle
meshes. We need to analyze the structure of these models to deter-
mine which edges form silhouette outlines. We define asilhouette
edgeto be an edge that connects a front-facing triangle to a back-
facing triangle. Because this condition depends both on the camera
viewpoint and the state of the model, we must compute these sil-
houette edges every frame that the world changes.

The brute-force approach to finding the silhouette edges simply
checks every edge of the mesh, every frame. This may suffice for
high-quality,non-interactive animations which can afford to sacri-
fice speed for guaranteed results, but causes a major bottleneck in
real-time applications like ours.

Several algorithms for rapidly finding the silhouette edges already
exist. For a model withn edges andk silhouette edges, the method
used by Goochet al. [5] performs the detection of all silhouette
edges inO(k logn) by precomputing a spherical hierarchy data
structure, but their algorithm is rather complicated and difficult
to implement. Furthermore, reliance on expensive pre-computation
makes this algorithm inappropriate for use with changing meshes.

We use the randomized algorithm presented by Markosian
et al. [11]. Taking advantage of temporal coherence, this algorithm
uses the silhouettes found in the previous frame as a starting point
for a search of the current frame. For a mesh withn edges, we ran-
domly select a small fraction of edges to test. When a new silhouette
is found, its neighbors are also checked for local continuation of the
silhouette contour, leveraging the spatial coherence of silhouettes.
Further details are supplied in [10]. In our experience, this algo-
rithm has proven efficient, simple to code, and robust enough for
our real-time applications.

To appear in the proceedings of NPAR2000

(a) (b)

Figure 2 Current algorithms render the innocent-looking silhouette
of (a) by drawing the complicated mess of overlapping edges shown
in (b).

Figure 3 Small zig-zags called swallowtails often occur along sil-
houette profiles.

3 Problems Rendering Silhouette Edges

The second phase should render the raw silhouette edges found
in the previous step in some pleasing way. One straightforward
approach for implementations using a traditional API such as
OpenGL [1] is to turn onz-buffering and render the edges as line
strips. This is simple and fast, but does not allow stylization along
the silhouettes. When using thez-buffer, anything drawn at the sil-
houette edges will be clipped against the body of the mesh. Ide-
ally, we would disable thez-buffer and somehow draw strokes only
along edges which are already known to be visible.

Furthermore, a few well-placed strokes often express the shape of
a figure much more elegantly than a crowd of shorter marks. With
this in mind, we seek to simplify the silhouette edges extracted from
our models into paths that we can use to draw long, smooth strokes.
Working purely in object space, it’s hard to determine where these
paths overlap, so we end up over-drawing the silhouette, as shown
in Figure 2.

Also, the silhouette edges are connected to each other in ways that
often reflect the small-scale structure of the mesh—not the overall
shape of the object’s outline. Paths created by joining up silhou-
ette edges will contain small but frequent zig-zags that can cause
unwanted artifacts when rendering them as strokes. These zig-zags
occur at intersections called swallowtails where the silhouette tem-
porarily reverses direction to connect two overlapping edges. This
phenomenon is illustrated in Figure 3.

4 Image-Based Solutions

One class of algorithms addresses the problems inherent to work-
ing with silhouette edges by ignoring them altogether. Image-based
silhouette-rendering algorithms avoid explicitly finding the 3D sil-
houette edges and instead opt to use 2D image-processing tech-
niques. Notably, the work of Saito and Takahashi [16] renders the

outlines of 3D objects by applying edge-detection filters to specially
prepared depth and normal maps, and compositing the results with
the rest of the scene. However, such approaches suffer from alias-
ing as the silhouette positions jump from pixel to pixel in the image,
because the silhouette positions are not accurately tied to the under-
lying geometry. Furthermore, these algorithms do not easily allow
the use of stylized strokes. Curtis [4] has introduced a technique for
generating strokes along these pixel outlines, but using only pixel
data sacrifices precision, especially when trying to decide how to
join several intersecting curves. Also, techniques requiring multi-
pass filtering and compositing are often too slow for real-time appli-
cations. Raskar and Cohen [15] present a geometry-based approach
suitable for real-time use which also avoids explicitly finding sil-
houette edges, but their methods do not allow for stylized strokes.

These image-based techniques inherently focus on depicting only
the portions of the silhouettes that contribute to the final 2D image.
Like any good artist, these algorithms never evenconsiderexplic-
itly depicting every single silhouette edge, so they avoid the prob-
lems due to overlap and sub-pixel swallowtails. Furthermore, they
do not needz-buffering because the visibility is already known, al-
lowing systems like Curtis’s to apply stylizations without worrying
about strokes being clipped.

5 A Hybrid Algorithm

Our work combines the benefits of the image-based approach with
the accuracy of a geometry-based approach. As in the latter, we
begin by detecting the silhouette edges of the model, but then we
compute visibility and adjacency using a 2D projection of the sil-
houette edges. This lets us maintain the precision of object coordi-
nates while still working in 2D where that makes most sense. At a
high level, the algorithm proceeds as follows:

1. Find silhouette edges.

2. Determine visible segments of each edge.

3. Apply correction for overlaps in segments.

4. Link segments into smooth paths.

5. Render stylized strokes along these paths.

In what follows, the termedgerefers to a silhouette edge of the
mesh; a single visible portion of an edge (such as found in step 2
above) is called asegment; and a collection of segments that form
a continuous sequence in image space is called apath.

Step 1 above is discussed in Section 2. In the remainder of this
section we describe steps 2 through 4. The final step is described in
Section 6.

5.1 Extracting Visible Segments

Once we have detected the silhouette edges in the current frame,
the next step is to determine which portions of the silhouette edges
are visible. Our method makes use of the “ID reference image” dis-
cussed in a previous paper [9]. Briefly, we create the ID reference
image by first rendering the scene with each silhouette edge and
each mesh triangle drawn in a color that uniquely identifies it, then
reading this image from the framebuffer into memory. Details on
how to use the ID reference image to determine visibility can be
found in [10].

We next iterate over all the pixels in the reference image and build
a list L of edges that contributed at least one pixel. We thus remove
from consideration silhouette edges that make no contribution to
the pixels of the current frame (such as many of the silhouette edges
seen in Figure 2 (b)).

2

To appear in the proceedings of NPAR2000

S’
S

S’
S S’

S

S’

S

(a) (b)

Figure 4 In (a), segmentsSandS′ are corrected by redefining their
overlappedendpoints to midpoint between them. The angle between
the segments is exaggerated for clarity. An undesired segment is
eliminated in (b).

Next we scan-convert along each edge inL to determine which por-
tions of it show up in the ID reference image, and hence are visi-
ble.1 We record each such visible portion, orsegment. A segment
consists of its two image-space endpoints and a pointer to the asso-
ciated edge. The endpoints need not project exactly onto the edge;
for example, a segment may extend across a pixel even when its
associated edge occupies just a small fraction of the pixel in the
current view.

To determine whether an edgee “shows up” in the ID reference im-
age at a given image space pointx one, we check the ID reference
image atx, and also at nearby points (within two pixels in practice)
along the image-space line perpendicular toe and passing through
x. If eshows up anywhere along this line, we considere to be visible
atx. In addition, we record a list of neighboring edges encountered
along this line for use in the next step of the algorithm.

5.2 Correcting For Overlaps

The segments are intended to be linked together to form long, con-
nected image-space paths that will serve as the basis for stylized
strokes. Before we perform this linking step, we first carry out two
correction steps that promote longer and smoother paths. These are
shown in Figure 4.

We “merge” segments that overlap and are nearly parallel; and we
eliminate a segment if it is adjacent and nearly parallel to another
segment, and the first segment is shorter. In both cases, we consider
two edges nearly parallel if the angle between them is less than 1
degree.

5.3 Linking Segments into Paths

At this point we have a collection of segments that together closely
approximate the visible silhouettes of the scene. The next step is
to link these segments into long chains, or paths, that will form the
basis for the strokes. To do this, we first search near each segment’s
endpoints for potential neighbors. The search is an× n-pixel local
search in the reference image.2 We perform a series of tests to com-
pute the suitability ofeach potential match between segments and
neighborn, outlined in Figure 5.

Whenever we link a pair together, we keep a list of “divorced” seg-
ments, i.e., any segments that the new pair had previously been
linked to. Once we have tried to find neighbors for each edge, we
allow these divorced segments another chance at linking up.

1It can happen that a visible portion of an edge doesnot show up in
the ID reference image. This might happen for example if the edge is too
small to contribute to the rasterization of the image. For our purposes, it is
sufficient to find just those visible portions that appear in the ID reference
image.

2In our system,n = 3.

CHECK-MATCH(s,n)
θ ← angle betweens andn
θmax← max angle allowed to link
D← distance between endpoints ofs andn
Dmax← max distance allowed to link

if s is already linked ton
reject n

if θ ≥ θmax

reject n
if endpoints ofs andn don’t overlap
and D ≤ Dmax

and θ ≤ angle ofs’s current neighbor (if any)
and θ ≤ angle ofn’s current neighbor (if any)

link s andn

Figure 5 The CHECK-M ATCH function determines whether seg-
mentss andn are suitable for being linked to each other. We use
θmax = 45◦ andDmax = 2 pixels.

5.4 Rendering Paths

The final phase of our algorithm renders each newly-created path
using an “artistic stroke.” These strokes are defined in image space,
and the visibility of the silhouettes they represent is already assured,
so we can disable depth testing and safely draw the strokes with
various image-space stylizations. Enabling depth testing would pre-
clude the use of such stylizations, since we cannot reliably assign
depth values to parts of the stroke affected by the stylization. We
now go into more detail about how these strokes are built and dis-
played.

6 Fast Artistic Strokes for 3D Scenes

Ultimately the success of any art-based rendering system depends
on producing appealing images. Thus the final step of our algorithm
takes great care to allow for a wide range of expressive strokes. To
convincingly mimic traditional 2D illustration, our strokes should
appear foremost as marks on a flat drawing surface—not objects
floating in 3D space. From this vantage point, we may choose to
selectively reintroduce hints of depth and distance, which we dis-
cuss below in Section 6.2.3.

On a practical level, this goal necessitatesusing a coordinate system
in which stroke proportions will reflect screen distance, rather than
3D world distance. We use a variant of what the OpenGL reference
manual labels “device coordinates” [1], normalized to preserve the
aspect ratio of the drawing area. In other words, our coordinates
range from -1 to 1 across the smaller screen dimension, and from
−d to d across the larger dimension, whered is the aspect ratio
of the window. Unlike a pure screen-space coordinate system, our
points retain theirz component, allowing us to render strokes using
traditional depth buffering if desired. Thisz-buffered approach is
used to render the strokes outlining the graftals of Kowalskiet al.[9,
12], and the strokes of Cohen, Zeleznik and Hughes’ user-drawn
world [3]. For the algorithm described in this paper, we only place
strokes where we already know they will be visible, so we can draw
withoutz-buffering.

6.1 Creating Basic Strokes

Given a list of vertex/width pairs, we would like to render a stroke
that passes through each vertex, smoothly transitions between the
given widths, and joins corners to create a continuous path. Unfor-
tunately OpenGL does not support lines of varying width and leaves
large gaps between corners of thick line strips. These problems led

3

To appear in the proceedings of NPAR2000

v2 v3

v4

2r

1

3
4r

r r
d2}

v1

Figure 6 Constructing rib vectors~ri to add width to a four-vertex stroke.

Figure 7 Effect of scaling rib vector to maintain constant path width.

us to create a variable-width line primitive by leveraging OpenGL’s
speed and flexibility at drawing long triangle strips. We proceed
with a method inspired by the work of Hsuet al. [7, 8].

For each path vertexvi and its corresponding pixel widthwi , we
generate a vector “rib”~ri along the angle bisector which allows us
to give breadth to the stroke. This is illustrated in Figure 6. Figure 7
demonstrates the need to scale the length of these ribs to maintain
a desired path width. The scale factor for each rib is computed as

f = | |~ri|
~ri ·~ni

|

where~ni is the normalized vector perpendicular to the the path di-
rection betweenvi andvi+1. Intuitively, this means that the ribs are
scaled wider at sharper corners, and left alone at straight segments.
We limit the amount of scaling to a factor of 2, since otherwise the
miter for a very sharp corner would be too large.

Once we have a suitable set of ribs, we render the stroke as a series
of triangle strips. Point pairs for the strips are generated by offset-
ting each path vertexvi by its corresponding rib vector~ri , and its
opposite−~ri. The end result of this phase is a variable-width line
strip with nicely joined corners. Now we need to liven up the strokes
by adding artistic effects.

6.2 Stylistic Variations

In our system, the designer decides on a combination of styliza-
tion operations to apply to the strokes for a given object. All of the
style options can be freely mixed and matched, allowing for a wide
range of expressiveness. Figure 8 shows how each operation affects
a stroke. Since each stroke must be rebuilt every frame, we have
tried to make sure that these operations add little overhead to the
overall stroke building and rendering burden. We will now describe
three categories of stylizations possible with our system.

6.2.1 Resolution-Dependent Stylizations

For the first type of stylization, we perturb the appearance of the
stroke along its length. To do this, we need to ensure that the screen
distance between adjacent vertices does not exceed some specified
maximum (in practice, 2-3 pixels). Ideally, we would resample the
stroke to have perfectly even segments using an interpolating spline
curve. In practice, we linearly divide each individual path segment,

Figure 8 The cumulative effects of adding stroke operations, from
left to right: raw stroke, antialiasing, taper, flare, wiggle, alpha fade,
and texture-mapping.

adding evenly-spaced vertices to approximate the desired overall
spacing. This leaves the original shape of the path undisturbed, and
keeps this phase quick.

Once we have a sufficiently fine sampling of stroke vertices, we
can perturb their locations and widths to achieve an uneven, hand-
drawn look. Our current system applies offsets created by the user
with the help of a separate tool. This allows our strokes to reflect
the individual character of the user’s lines. These strokes are similar
to the ones described in [11].

Another style adds an alpha fade in which we linearly increase the
transparency along the length of each stroke, creating a simple wa-
tercolor or ink-wash feel, as seen in Figure 1. One other operation
flares the overall width of the stroke from end-to-end to create a
brush-stroke shape. The flare function we use is

f =
√

1− t2 where t =
current vertex index

max vertex index

6.2.2 Other Stylizations

The second category of operations does not require fixed spacing.
These include antialiasing, tapering the ends of each stroke to a
point, and applying texture maps along the length of the stroke. Our
implementations of OpenGL only support one antialiased primitive:
the 1-pixel-wide line. Luckily, we can use this to simulate smoothed
triangle strips by placing an antialiased line-strip around the bound-
ary of the stroke. This adds virtually no overhead, and we can know
that the antialiasing will register correctly because the line-strips
use the exact same coordinates as the body of the stroke.

Tapering the ends of strokes is a bit more complex, but this is an
important effect to simulate. First, we ensure a sufficient distribu-
tion of vertices to achieve a gradual thinning near the ends of each
stroke. We insert vertices along the beginning and ending segments,
linearly interpolated in the manner mentioned above. If we are us-
ing any of the operations from the previous section, we have already
performed an overall interpolation, and may skip this step. Next we
scale the rib size of these taper vertices by a function similar to the

4

To appear in the proceedings of NPAR2000

Figure 9 A simple architectural rendering that uses wiggle, flare, and tapering.

flare function given above. The result is a smoothly rounded ending
for each stroke.

A second style of tapering adds verticesbeyondthe endpoints of
the stroke using the direction of the final segment. This creates a
rounded extension to the stroke that can be used to hide seams at
stroke boundaries. This second taper style is used to render all of
the examples in this paper, and addresses the same problem treated
by Goochet al. [6], who used fat dots to hide the problem.

One final effect is to stretch a texture map over the length of the
stroke. Smoothly faded strokes are easy to draw using this method.
We simply apply textures with large regions of transparency (see
Figure 12).

6.2.3 Depth and Distance Cue

Often traditional illustration styles give perspective cues by de-
creasing line weight for distant objects. We mimic this effect by
modifying line widths based on two scaling factors: distance cue
and depth cue.

The first modifies the overall stroke width based on the distance to
an object. As the object recedes, the silhouettes gradually thin; as
the object approaches the camera, the silhouettes widen. When the
silhouette-rendering algorithm is first applied to a mesh, we com-
pute the valueDi , which is the initial ratio of object-space length to
screen-space length at the origin of the mesh. In successive frames,
we compute the current scaling factorDc, and multiply the scaling
factor

fD =

√
Dc

Di

with the width of each stroke used to render that mesh. This is a
non-linear scale in order to soften the effects of the distance cue.

The second pass varies the width of the strokes as the depthwithin
an objectvaries. This provides a simple cue to the foreshortening
of different parts of the mesh, similar to an effect demonstrated
by Gooch [6]. Every frame, we compute the frame-bufferz-value
bounds of each mesh,zmin andzmax. We would like to scale the width
of each stroke vertexv based on its depth,zv, so that the foremost
vertices are scaled by a factor 1 +S, and the rearmost vertices by
1− S. We compute the scalefv for vertexv as

fv = max(0, 1 +S
zmax + zmin− 2zv

zmax− zmin
) where 0≤ S≤ 1

and multiply the width ofeach vertex by it. UnlikefD, this fv varies

linearly with depth to enhance the localized, intra-object perspec-
tive hint.

7 Discussion

In the end, the success of any non-photorealistic rendering system
rests on the quality of its final rendered images. We find our view-
dependentstroke framework robust, fast, and very flexible for creat-
ing effective real-time illustrations. Similar uses of tapering artistic
strokes can be found in the pen-and-ink work of Salisbury, Winken-
bach, Salesin and others [17, 18], and previous work here at Brown
University [11, 9, 3].

The results of using our artistic stroke renderer to depict the paths
found by our silhouette-extraction algorithm are shown in Figures 1
and 9 - 12. Figures 11 and 12 can be found in the Color Plates sec-
tion. These examples range from simple outlines to highly stylized
brushwork, giving an idea of the flexibility offered.

Our system is fast enough for interactive use. On a high end Sun
workstation, our frame rate varies from about 2 fps for scenes like
the house in Figure 9 with many silhouettes, to 10 fps for simpler
models like the frog hand or the sandal (Figures 10 and 1). An-
tialiasing our stroke primitives greatly enhances image quality, es-
pecially noticeable in frame-by-frame renderings (see theaccompa-
nying animations for examples). However, animations of the scene
in Figure 12 reveal small, unwanted strokes that sometimes appear
in regions of negative curvature. In these cases, our visibility and
placement algorithms have decided to render edges that we find
unattractive. It is possible that we could create additional tests to
filter out these edges, but this is left as future work.

Another limitation of our algorithm is that it does not make any at-
tempt to remember where it drew silhouettes in previous frames,
much less how it parameterized the stylizations used in those
strokes. This was a conscious decision in order to simplify and
speed our algorithm. We gain some degree of coherence from our
reliance on mesh structure, and provide line styles which hide in-
consistencies between frames. For styles with uniform line char-
acter, such as in Figure 10, we can produce smooth, temporally-
coherent animations, but for animations of styles in which each
stroke is more noticeably varied, such as in Figure 12, lack of inter-
frame coherence is often distracting. For high frame-rates, this ran-
domness becomes much more noticeable, but in some cases it can
become a desirable aesthetic effect [4].

5

To appear in the proceedings of NPAR2000

Figure 10 A frog hand. Stroke width varies as a depth cue.

8 Future Work

We know of related algorithms that have attempted to provide con-
trol over inter-frame coherence, notably the work of Bourdev [2],
and Masuchet al. [13, 14]. One possible direction for future work
would integrate the control afforded by these algorithms with the
aesthetic details of our present work.

One of the advantages of our algorithm is that it works for arbitrary
closed meshes, but often we would like to include detail that has
been previously annotated by a user. We cannot expect an algorithm
to choose the “right” strokes to draw a scene because there is no
way to decide what those strokes would be. For a realistic renderer,
thereis a verifiable standard of what the right answer should look
like: the real world.

However, a non-photorealistic/art-based rendering system should
not impose the standards of the “real world” on our images. Like
traditional artistic media, such a system should allow the user the
possibility of expressing anything she wants, in any way she wants.
It is our hope that the work presented in this paper provides tools
that will help realize this goal, but much work still needs to bedone
before an artist will feel at home using such a system.

9 Acknowledgements

We thank Jun Ohya and Ryohei Nakatsu of ATR Labs for invalu-
able advice and support. This work is supported in part by the NSF
STC for Computer Graphics and Scientific Visualization, Adobe,
Advanced Network and Services, Alias/Wavefront, Department of
Energy, IBM, Intel, Microsoft, National Tele-Immersion Initiative,
Sun Microsystems, and TACO.

References

[1] OpenGL Architecture Review Board.OpenGL Reference Manual,
2nd Edition. Addison-Wesley Developers Press, 1996.

[2] Lubomir D. Bourdev. Rendering Nonphotorealistic Strokes with Tem-
poral and Arc-Length Coherence. Master’s thesis, Brown University,
May 1998.

[3] Jonathan M. Cohen, John F. Hughes, and Robert C. Zeleznik. Harold:
A World Made of Drawings. InProceedings of the First International
Symposium on Non Photorealistic Animation and Rendering (NPAR)
for Art and Entertainment, June 2000. Held in Annecy, France.

[4] Cassidy Curtis. Loose and Sketchy Animation. Siggraph ’98 Techni-
cal Sketch, 1998.

[5] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A Non-
Photorealistic Lighting Model for Automatic Technical Illustration.
Proceedings of SIGGRAPH 98, pages 447–452, July 1998. ISBN 0-
89791-999-8. Held in Orlando, Florida.

[6] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter Shirley, and
Rich Riesenfeld. Interactive Technical Illustration.1999 ACM Sym-
posium on Interactive 3D Graphics, pages 31–38, April 1999. ISBN
1-58113-082-1.

[7] S. C. Hsu, I. H. H. Lee, and H. E. Wiseman. Skeletal Strokes. In
Proceedings of UIST ’93, pages 197–206, November 1993.

[8] Siu Chi Hsu and Irene H. H. Lee. Drawing and Animation Using
Skeletal Strokes.Proceedings of SIGGRAPH 94, pages 109–118, July
1994. ISBN 0-89791-667-0. Held in Orlando, Florida.

[9] Michael A. Kowalski, Lee Markosian, J. D. Northrup, Lubomir Bour-
dev, Ronen Barzel, Loring S. Holden, and John Hughes. Art-Based
Rendering of Fur, Grass, and Trees.Proceedings of SIGGRAPH 99,
pages 433–438, August 1999. ISBN 0-20148-560-5. Held in Los An-
geles, California.

[10] Lee Markosian. Art-based Modeling and Rendering for Computer
Graphics. PhD thesis, Brown University, May 2000.

[11] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin, Lubomir D.
Bourdev, Daniel Goldstein, and John F. Hughes. Real-Time Nonpho-
torealistic Rendering.Proceedings of SIGGRAPH 97, pages 415–420,
August 1997. ISBN 0-89791-896-7. Held in Los Angeles, California.

[12] Lee Markosian, Barbara J. Meier, Michael A. Kowalski, Loring S.
Holden, J. D. Northrup, and John F. Hughes. Art-based Rendering
with Continuous Levels of Detail. InProceedings of the First Inter-
national Symposium on Non Photorealistic Animation and Render-
ing (NPAR) for Art and Entertainment, June 2000. Held in Annecy,
France.

[13] Maic Masuch, Stefan Schlechtweg, and Bert Sch¨onwälder. daLi! -
Drawing Animated Lines! InProceedings of Simulation und Anima-
tion ’97, pages 87–96. SCS Europe, 1997.

[14] Maic Masuch, Lars Schuhmann, and Stefan Schlechtweg. Frame-To-
Frame-Coherent Line Drawings for Illustrated Purposes. InProceed-
ings of Simulation und Visualisierung ’98, pages 101–112. SCS Eu-
rope, 1998.

[15] Ramesh Raskar and Michael Cohen. Image Precision Silhouette
Edges. 1999 ACM Symposium on Interactive 3D Graphics, pages
135–140, April 1999. ISBN 1-58113-082-1.

[16] Takafumi Saito and Tokiichiro Takahashi. Comprehensible Rendering
of 3D Shapes.Computer Graphics (Proceedings of SIGGRAPH 90),
24(4):197–206, August 1990. ISBN 0-201-50933-4. Held in Dallas,
Texas.

[17] Michael P. Salisbury, Sean E. Anderson, Ronen Barzel, and David H.
Salesin. Interactive Pen-And-Ink Illustration.Proceedings of SIG-
GRAPH 94, pages 101–108, July 1994. ISBN 0-89791-667-0. Held in
Orlando, Florida.

[18] Georges Winkenbach and David H. Salesin. Rendering Paramet-
ric Surfaces in Pen and Ink.Proceedings of SIGGRAPH 96, pages
469–476, August 1996. ISBN 0-201-94800-1. Held in New Orleans,
Louisiana.

6

To appear in the proceedings of NPAR2000

Figure 11 A simple office scene.

Figure 12 This trumpet demonstrates the use of texture-mapping to create soft strokes.

7

