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Figure 1: Hidden line, realistic fur, shadow volume, and cartoon fur styles implemented using only the GPU.  

 
Abstract 
Algorithms that detect silhouettes, creases, and other edge based 
features often perform per-edge and per-face mesh computations 
using global adjacency information. These are unsuitable for 
hardware-pipeline implementation, where programmability is at 
the vertex and pixel level and only local information is available. 
Card and Mitchell and Gooch have suggested that adjacency 
information could be packed into a vertex data structure; we 
describe the details of converting global/per-edge computations 
into local/per-vertex computations on a related ‘edge mesh.’ 
Using this trick, we describe a feature-edge detection algorithm 
that runs entirely in hardware, and show how to use it to create 
thick screen-space contours with end-caps that join adjacent thick 
line segments. The end-cap technique favors speed over quality 
and produces artifacts for some meshes.  

We present two parameterizations for mapping stroke textures 
onto these thick lines—a tessellation-independent screen space 
method that is better suited to still images, and an object space 
method better suited to animation. As additional applications, we 
show how to create fins for fur rendering and how to extrude 
contours in world-space to create the sides of a shadow volume 
directly on the GPU. 

The edge mesh is about nine times larger than the original 
mesh when stored at 16-bit precision and is constructed through a 
linear time pre-processing step. As long as topology remains 
fixed, the edge mesh can be animated as if it were a vertex mesh. 
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1 Introduction 
Many non-photorealistic rendering algorithms draw strokes to 
mark the edge-features of a model; these strokes are often 
textured, and may not follow the geometry of the model-edge 
exactly. Current algorithms can be coarsely divided into 
geometric and image-based methods. Geometric methods detect 
features and then convert the resulting poly-lines into strokes to be 
rendered. Image-based methods examine the color and depth 

components of the frame buffer to discern edges. Computing the 
edge list on the CPU and transmitting it to the GPU is a bottleneck 
for the first class of algorithms; reading back the frame-buffer and 
pixel-processing are bottlenecks in the second class.  

Card and Mitchell [Card02] and later Gooch [Gooch03] 
described a method of packing information about adjacent faces 
into a “vertex” data structure that actually represents a single edge 
of a mesh, and from which it is easy to determine whether that 
edge represents a visible feature. We rediscovered this idea 
extended it in several ways; the present paper therefore 
contributes (a) a detailed explanation of the underlying method, 
and (b) algorithms for using the detected edges in several new 
ways. In particular, we present an algorithm for directly 
computing and rendering the visible feature edges1 of a model 
with thick, textured lines that executes entirely on the GPU after 
an initial preprocessing step. We show how to make this 
algorithm work for key-frame and skin-and-bones (matrix 
skinned) animated models. We describe several applications of 
these ideas, and discuss their limitations.  

There are four drawbacks of the work: the first is that some 
O(n)-time preprocessing is required on the CPU; the second is that 
the data sent to the GPU is about nine times as large as the data 
sent for an ordinary rendering; the third is that the thick-line-
drawing algorithm, which generally fills in gaps between adjacent 
thick line segments, can fail to do so in some cases.; the fourth is 
that the size of the vertex program makes it slow down the current 
generation GPU, so there’s a substantial loss of rendering speed. 

In Appendix A, we briefly discuss two further applications of 
these ideas: generating Zorin-Hertzmann-style smooth contours, 
and generating suggestive contours.  

1.1 Definition of Edge Features 
An edge feature is, loosely speaking, an edge we wish to stroke in 
a line-drawing of a polyhedral object. This includes contour, 
valley-crease, ridge-crease, marked, and boundary edges, each of 
which we describe here.  

Figure 2 shows an edge between adjacent faces A = <v0, v1, v2> 
and B = <v3, v1, v0> with unit face normals  

nA = normalize([v1 – v0] × [v2 – v0]) and   
nB = normalize([v3 – v0] × [v1 – v0]).  

Te edge connects vertices v0 and v1, which have per-vertex surface 
normals n0 and n1 respectively. When exactly one of A and B is a 

                                                 
1 We also briefly mention an algorithm for drawing hidden contours. 
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front face and the other is a back face with respect to the viewer, 
we call the an edge a contour edge2. A ridge-crease-edge is one 
where the internal angle between A and B is less than the user-
specified threshold angle θR. A valley-crease-edge is one where 
the external angle between A and B is less than the user-specified 
threshold angle θV. (Together these last two are called crease 
edges.) A marked edge is one that has been selected by a human 
modeler to be always considered a contour edge, which is useful 
for creating divisions between differently textured regions of a 
model or for highlighting details. Finally, some models are not 
closed—they have edges that have only a single adjacent face, 
which are called boundary edges; following Buchanan and Sousa 
[Buchanan00] we count these, too, as feature edges.3 
 
 
 
 
 
 
 
 
 
 

1.2 Target Architecture  
The techniques described in this paper are designed for use on 
modern programmable graphics hardware implementation, a so-
called graphics processing unit (GPU) that is accessed through an 
API like OpenGL or DirectX. We describe the relevant vertex 
processing features and limitations of today’s GPUs. 

The GPU pipeline consists of four sequential units: vertex 
processor, rasterizer, fragment (pixel) processor, and combiner 
and a large block (hundreds of megabytes) of dedicated video 
memory. This memory is used to store the frame buffer, textures, 
and scene geometry. The bus connecting the CPU to the GPU is 
often too slow [NVIDIA] to transfer the texture and geometry data 
needed every frame; when it is fast enough, demands increase to 
once again make it too slow. This imposes a major restriction 
necessary for performance: only a small amount of data can be 
dynamically updated by the CPU, and a majority must be static 
and preloaded before interactive rendering begins. This bandwidth 
limitation is so severe that performance can drop by a factor of 10 
to 100 when too much data is dynamic. The goal of moving 
graphics processing from the CPU to GPU is therefore not just to 
lessen the CPU load but to avoid the bandwidth limitation.  

Geometry is stored in vertex buffers and fed to the vertex 
processor as a stream of vertices. The order of vertices in the 
stream can, at the programmer’s choice, either match the order of 
their appearance in the buffer or be random access dictated by a 
separate index array. The vertex processor is responsible for 
transforming vertices from object to homogeneous clip space and 
computing the quantities to be interpolated across a triangle 
shading like the diffuse and specular lighting components. The 
transformation is typically accomplished by multiplying by the 
“model-view-projection” matrix MVP. 

The vertex processor has two design characteristics that limit 
flexibility but allow incredible throughput. First, each vertex must 
be processed independently. No information can be stored in 
registers between the handling of one vertex and the next, and the 

                                                 
2 Such edges are sometimes called silhouette edges in the literature; we 
reserve that term for edges that lie between the object and the background; 
such edges are a subset of the contour edges for a closed surface. 
3 The Stanford bunny has several of these on its bottom surface, for 
example 

vertex processor is incapable of writing back to the input buffer. 
Second, vertices can neither be created nor destroyed. We discuss 
the challenges these limitations present for contour determination 
at the end of this section.  

Each vertex structure has many fields known as attributes that 
are 4-tuples. Usually these are used to store 3D position, surface 
normal, color, and multiple sets of texture coordinates at the 
vertex but a programmer is free to use them for other purposes 
such as encoding animation data. Although the CPU cannot 
modify data per-frame, the vertex processor can distort the input 
during the object-to-homogeneous-space transformation. 

We write the attributes of a vertex using tuple notation. A 
mesh vertex typical of real-time applications that stores 3D 
position v in attribute 0, 4-component color c in attribute 1, 3D 
normal n in attribute 2, and two 2D texture coordinates t0 and t1 in 
attributes 3 and 4 is written as <v, c, n, t0, t1>. The unused w-
components of attributes 0, 2, and 3 and the unused z-component 
of attribute 3 are ignored; they are present when these attributes 
are loaded into registers but are not explicitly stored in the vertex 
array. Boolean and small integer values can be stored in the 
attributes, albeit encoded as floating point numbers. 

The vertex processor offers the normal mathematical, branch, 
and logic operators but is severely limited in terms of memory. It 
has no stack and is limited to a handful (16 for the current 
generation) of general purpose 4-component floating point 
registers. Relative addressing is only available against a small 
(255) set of constant registers that are written only by the CPU 
between batches of vertices. These are used to store parameters 
that are uniform across all vertices  as well as numeric constants.  

The rasterizer collects the transformed vertex stream from the 
vertex processor and converts it to primitives, clips those 
primitives against the clipping planes, then rasterizes the 
remaining portions into fragments which are fed to the fragment 
processor. It is not programmable; the programmer chooses only 
the desired primitive type (every two vertices is a line, every three 
is a triangle, or  every four is a quad) prior to sending each batch 
of vertices. For additional performance, the primitives can be 
connected as strips, where only one vertex is needed per line 
segment or triangle and two for each quad. Note that the rasterizer 
is the only unit in the pipeline that has a notion of a primitive: the 
vertex processor sees only a stream of vertices and the fragment 
processor only a stream of fragments. 

The fragment processor handles per-fragment texture lookup 
and shading. It cannot move the location of the fragment being 
shaded or access adjacent fragments, but can abort then rendering 
of a fragment. The combiner unit performs final alpha blending 
and writes fragments to the frame buffer.  

We designed our contour determination algorithm for the 
vertex processor because it is the only programmable stage where 
3D geometry is available. The limitations of the vertex processor 
make contour determination challenging for three reasons. First,   
it is a vertex processor but contours are edge features. Second, the 
definition of a contour depends on not only the edge’s vertices but 
on adjacent vertices as well, and the vertex processor cannot 
access these in the one-vertex-at-a-time model. Third, the number 
of contour edges is viewer dependent and not known a priori, but 
the vertex processor can neither create geometry to build up a 
contour list or destroy geometry to cull non-contour edges. 

 
 
2 Related Work and Other Applications 
Packing adjacent face normals into the texture coordinates of a 
vertex has been previously proposed [Card02; Gooch03]. In such 
a scheme, each edge is rendered as a degenerate quad that is 
expanded to non-zero width only if the edge is determined to be a 
feature in the vertex processor.  

Figure 2: The edge from v0 to v1 with adjacent faces A and B. 
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    We extend this idea by storing the four vertices of the two 
faces adjacent to each edge instead of explicit face normals. This 
allows us to construct correct face normals under animation. We 
then add a texture parameterization for artistic strokes and per-
face computations for smooth silhouettes and suggestive contours. 
We then resolve the practical issues that arise by fixing the gaps 
between quadrilaterals, computing correct face normals for 
animated models, providing faster rejection using clip planes, 
addressing coherence, compressing data, and identifying 
shortcomings of the general technique. 

Edge feature rendering methods can be classified into those 
that construct stroke geometry and those that operate on images. 
Geometry approaches such as ours construct explicit stroke 
geometry for contours and then deform or texture that geometry to 
produce stylized strokes. Previous geometry methods operated in 
whole or in part on the CPU. Markosian et al. [Markosian97] 
create strokes from contour edges detected using a randomized 
algorithm; Gooch et. al [Gooch99] compute silhouettes by treating 
face normals as points of the sphere, and edges as great arcs 
between these normal vectors, so that finding silhouettes amounts 
to intersecting this sphere mesh with a great circle; and 
Hertzmann and Zorin [Hertzmann00] used a dual-surface 
approach, in which tangent places to the surface are mapped to 
points in a dual space, and the contour-detection problem becomes 
a surface-plane intersection problem in that space, which can be 
solved quickly with BSP methods. From stroke geometry, a 
coherent texture parameterization can be developed. The coherent 
stylized silhouette method by Kalnins et al. [Kalnins03] provides 
nearly ideal frame-to-frame coherence as well as nicely placed 
strokes for a still image by explicit pixel flow between frames. 
Because their method cannot be implemented on the vertex 
processor we rely on a significantly less sophisticated methods. 
Our texture parameterizations are lower quality, but can be 
executed in parallel on multiple vertex units and are therefore 
amenable to substantially higher performance. 

Image methods such as Saito and Takahashi’s G-buffer 
[Saito90] detect depth, color, and curvature discontinuities in a 
rendered image. ATI engineers implemented this method in a 
pixel program for a real-time NPR demo shown at SIGGRAPH 
2002 [Mitchell02]. Gooch et. al [Gooch99] observe that 
environment maps can darken the contour edges of a model but 
the resulting lines have uncontrolled, variable thickness. Dietrich 
[Dietrich99] refined this idea and used it with dithered two-tone 
shading to produce cartoon images on the GPU; Everitt 
[Everitt00] used the isotropy of MIP-maps to achieve a similar 
effect. Image methods have limited artistic style because there is 
no explicit stroke geometry to manipulate. However, they are able 
to detect edge features not explicitly present in the underlying 
mesh, for example, contours on parametric curves and the valley 
at the intersection of two polygons. Our method cannot detect 
these features. 

Raskar proposed a hybrid [Raskar01; 02] that constructs a 
black polygonal halo around every triangle in a mesh (Dietrich 
also proposed an early version of this using enlarged black 
backfaces). This halo can be oriented so that it is exposed only 
along contours and is otherwise concealed inside the mesh (artists 
have long used a similar trick of a large, inside-out mesh to 
simulate cartoon outlines on video game characters). Although he 
describes a CPU solution, it is straightforward to implement his 
method using only the vertex processor, however the conversion 
will still rasterize many more polygons than our method. Raskar’s 
method is limited to thin, black lines and cannot render thick or 
stylized strokes. 

Our method for selectively turning edges into extruded quads 
also has applications for realistic rendering methods. We briefly 
outline two such applications. 

A real-time, realistic fur algorithm [Lengyel01] renders 
individual hairs by stacking sheets of fur cross-section texture 
called shells. When shells are stacked nearly perpendicular to the 
view direction the individual layers can be seen, so Lengyel et al. 
add quads called fins textured with hairs in profile at these 
locations. They determine fin locations, which are near contour 
edges, on the CPU. We implement their algorithm entirely on the 
GPU. The vertex program used for shell rendering displaces each 
vertex slightly along its normal. For fin rendering, a separate 
vertex program detects locations where absolute value of the dot 
product of the view vector and one of the normals along an edge 
is greater than a threshold. As with our contour rendering 
algorithm, these edges are culled by moving them beyond the near 
clipping plane. The other edges are extruded into fins in a manner 
analogous to our thick line rendering algorithm. For contour 
rendering we extrude half-quads along the screen space 
perpendicular; for fur rendering, we extrude along the object 
space normal. The furry bunny in Figure 1b is  rendered with this 
method.  
 The shadow volume method of shadow determination was 
introduced by Crow [Crow77]. He creates volumes bounding all 
points shadowed by an object by extruding the contour edges of 
that object away from the light source. Lengyel [Lengyel02] 
showed how to perform the extrusion in hardware using two 
copies of each the input mesh vertex distinguished from each 
other by a w-component of either 0 or 1. His notion of duplicate 
vertices displaced according to an integer attribute is the 
inspiration for the attribute i in our edge mesh data structure. 
Although he extruded the volumes in hardware, Lengyel 
performed contour edge determination on the CPU. Using the 
edge mesh we can implement both the edge determination and 
extrusion steps on the GPU in a single vertex program. This 
vertex program culls non-contour edges as previously described 
and creates quads stretching from contour edges to infinity, away 
from the light source. Again these quads are similar to thick lines, 
but rather than extruding a finite distance along the perpendicular 
we extrude an infinite distance along the negative light vector. 
The shadows in figure 1c were rendered with this method. The 
other aspects of the shadow volume method are unchanged and 
we refer the reader to our comprehensive shadow volume paper 
[McGuire03] for details. 

Our shadow method is similar to the one proposed by Brennan 
[Brennan2003] that uses the face-normal structure of Card et al. 
Our enhancements to the work of Card et al. extend Brennan’s 
shadows with the benefits of our NPR method: removal of 
unextruded edges earlier in the pipeline using a clipping plane and 
correct face normals under animation. To save space and achieve 
better vertex performance we render light and dark shadow caps 
from the original and reserve the edge mesh for the sides. This 
offsets the cost of computing correct face normals which Brennan 
mentioned in passing, but rejected as too expensive because his 
algorithm was vertex limited from the degenerate edges on the 
caps. 

Brabec and Seidel [Brabec03] determined contour edges on 
the pixel processor using vertices encoded as color values and 
McCool [McCool03] computed shadow volumes from a depth 
map using an edge filter implemented on the pixel processor. Both 
require a CPU step to convert pixel values read back from the 
GPU into vertex values for a subsequent rendering pass. Although 
future hardware is likely to support this readback operation 
without CPU intervention, using the output of one rendering pass 
as the input for the next will always limit performance because 
shadow volume rendering cannot proceed until contour edge 
determination is complete. 

 



3 Edge Mesh  
Our contour determination technique sends geometry for all edges 
through the vertex processor and culls non-contour edges by 
transforming them behind the near clipping plane. This works 
around the vertex processor’s inability to explicitly destroy 
geometry, and since clipping occurs before rasterization, there is 
little cost for the edges that are culled. The key idea is to use the 
vertex-list not as a way to transmit information about vertices to 
the GPU, but rather to transmit information about edges. Thus 
each entry in the vertex list will really hold information about an 
edge in the model (and indeed, this edge information will be listed 
in four successive vertices, for reasons that will become apparent).  
To perform a per-edge contour determination at the vertex level 
we pack all of the information about an edge into the attributes of 
a vertex. We call a set of attributes packaged in this manner an 
edge vertex and represent it as <v0, v1, v2, v3, n0, n1, r, i> where the 
first six fields are the 3D vectors from figure 2, r is a random 
scalar used for texture parameterization and i is an integer 
between 0 and 3, inclusive, that differentiates the inside, outside, 
start, and finish ends of a thick edge stroke.  

In a pre-processing step, we compute the edge mesh from an 
input mesh of indexed triangles with per-vertex normals.4 Every 
undirected edge with index j in the input mesh becomes four 
consecutive edge vertices with indices 4j, 4j + 1, 4j +2, and 4j + 3 
in the edge mesh. These four edge vertices are identical except for 
the i values, which successively have values {0, 1, 2, 3}. Because 
the edges are undirected in the input mesh, direction of the edge in 
the edge mesh is arbitrary, that is, v0, v2, n0 can be swapped with 
v1, v3, n1 for all four edge vertices and produce an equivalent 
mesh. We use v3 = v0 to signify a boundary or marked edge. 

3.1 Memory use 
Each edge vertex in the edge mesh requires 80 bytes in 32-bit 
floating point representation and 37 bytes if the vectors are stored 
with 16-bit integer precision and i and p are packed into a single 
byte. For comparison, an input mesh vertex with a color, position, 
and two 2D texture coordinates <v, c, n, t0, t1> requires 52 bytes 
per vertex in floating point representation. An input mesh with E 
edges produces an edge mesh with 4E vertices. Because the 
numbers of vertices, edges, and faces (for an orientable surface) 
are related to the genus, g, by V – E + F = 2 – 2g, and because 3F 
= 2E, we get 3V – 3E + 2E = 3(2 – 2g), i.e., E = 3(V – 2 + 2g). For 
typical closed meshes5 the genus g is small, and we can say that E 
is about 3V. Thus on the whole, the edge mesh requires about 3 . 4 
. 37 / 52 = 9 times as much storage as the input mesh. 

3.2 Thin Line Contours – a straw-man algorithm 
We need a vertex program and index array to render the edge 
mesh; alone it is just an array of several collocated vertices with 
unusual texture coordinates. 

To render the contour edges of the input mesh as line 
segments – the simplest possible form of contour-rendering – we 
can render a line segment between alternate pairs of edge vertices. 
This is done by rendering an indexed line set using the edge mesh 
vertices an index array of the form [0, 1, 4, 5, …, 4E – 2, 4E – 1].6 

                                                 
4 The per-vertex normals can be computed using any reasonable weighting 
of adjacent face normals and need not have unit length. Only the mesh 
geometry is significant so collocated vertices can be welded together. 
5 For orientable meshes with B boundary components (connected 
collections of boundary edges), Euler’s formula becomes V – E + F = 2 – 
2g – B; once again, if the number of boundary components is small, the 
number of edges is approximately three times the number of triangles.  
6 Note that in this algorithm, we ignore edge vertices with indices 2, 3, 6, 
7, ... and hence could store only half as much data on the GPU.  

Every pair of edge vertices is collocated, so these line segments 
are initially degenerate. We use a vertex program to displace the 
vertices to form an edge and cull the edge when it is not a contour. 
The program is simple: the output is the point <0, 0, –1, 1> , 
which is behind the near clipping plane, if the vertices are on an 
edge that is not a contour, otherwise the output is the product of 
matrix MVP and v0 for edge vertices with i = 0 and the product of 
MVP and v1 for edge vertices with i = 1.  

A vertex is on a contour when any of the following 
expressions are true: 
 

Contour [nA · (eye – v0) < 0] XOR [nB · (eye – v0) < 0]  
Ridge [nA · nB < – cos θR] AND [(v3 – v2 ) · nA ≤ 0]  
Valley [nA · nB < – cos θV] AND [(v3 – v2) · nA > 0] (1) 
Marked v3 = v0  
Boundary v3 = v0   

In Equation 1, eye is the eye-point—the object space position of 
the viewer, or center of projection—θR and θV are the ridge and 
valley thresholds, and nA and nB are the unit face normals. The 
eye-point and cosines of threshold angles are uniform across all 
vertices and can be computed once per object per frame. The face 
normals are recomputed in the vertex program from the face 
vertices for every vertex. Marked and boundary edges are 
recognized by the v3 = v0 convention which must be enforced 
when the edge mesh is created. 
 Although OpenGL supports line rasterization for thick lines, it 
does not provide line joining. A gap appears at the corner where 
two thick lines meet, as shown in figure 3. DirectX does not 
support thick line rasterization at all. This first method is therefore 
only suited for thin edges with a thickness of one or two pixels. 

3.3 Thick Contours 
We render thick edges in three passes. The first pass extrudes each 
edge along its perpendicular to form a quad. The second and third 
passes create start and finish caps at the ends of each edge. When 
two edges meet at a vertex, as depicted in figure 4, their caps fit 
together to fill the gap shown in figure 3 (right), creating a smooth 
join. 
  
 
 
 
 
  
 
 
 
 
 
 

The first pass uses an index array containing the integers from 0 
to 4E, in order.7 It uses a vertex program that displaces each of the 

                                                 
7 As a shortcut, the OpenGL function glDrawArrays processes each vertex 
in an array in order, without an index array of sequential integers. 

 
Figure 3: Thick lines leave a triangular gap where they 
meet (left). We introduce end caps to fill the gap (right). 
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Figure 4: The edge between screen-space points s0 and s1 
extruded into a thick quad with triangular end caps between 
the quad and vertex normals. 

“inside” 



four edge vertices for an edge to a different corner of the quad. As 
before, if the edge is not a contour, all vertices are transformed to 
<0, 0, –1, 1> where they are culled by the near plane. For each 
edge vertex, let s0 = (MVP * v0)xy and s1 = (MVP * v1)xy be the xy 
parts of the screen space projections of v0 and v1. The unit length 
screen space perpendicular to the edge is p = normalize(<s0y – s1y,  
s1x – s0x>), the unit length screen space projection of the vertex 
normal is m0 = normalize(MVP * [v0 + n0]xy –  s0), and the 
transformed position depends on i as follows: 
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This produces a degenerate quad that is culled for each non-
contour edge and a non-degenerate 2-unit thick quad for each 
contour edge. The thickness can be adjusted by scaling p. Because 
it is a screen space vector, a scale factor of  k divided by screen 
resolution produces a k-pixel thick line. 
 It is sometimes desirable to only draw half the quad, for 
example, to eliminate overdraw on the interior of an object when 
rendering a silhouette. Equation 3 gives coordinates for a half 
quad that is on the outside (side of the projected normal) of the 
edge.  
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The sign function returns –1 for a negative argument and +1 for a 
positive argument.  

The second pass uses an index array containing triples of 
vertices of the form [0, 1, 2, 4, 5, 6, …, 4E – 4, 4E – 3, 4E – 2]. 
These form the start-cap triangles. Equation 3 gives the 
transformed vertex position as a function of j, which is equal to i 
when m0 and p are in the same direction (i.e., forward traversal 
yields a front facing cap) and (2 – i) when backward traversal of 
the vertices is required to create a front face. 
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As before, the sign(m0 
.  p) term ensures that the second edge 

vertex in each triangle is on the outside of the stroke. The third 
pass produces the finish-caps using the same index array and an 
equivalent transformation at the finish vertex: 
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where m1 = normalize(MVP * [v1 + n1]xy –  s1). Stroke thickness is 
controlled by both scaling  m and p. As with the thin line and quad 
programs, both end cap vertex programs transform vertices that 
are not on contour edges to the point <0, 0, –1, 1>.    
 The quad and two end caps fit together with adjacent lines to 
form a solid thick line without gaps, as shown in the right half of 
figure 4. The gap between quads appears on the convex side of the 
projected curve.  On the concave side the two quads overlap.  That 
overlap is an incorrect rendering but looks good; it is both hard to 

see (even with a structured texture) and is often hidden inside the 
model anyway.  We'd like to insert triangles connecting each quad 
to its neighbor to close the gap on the convex side.  Because edges 
do not have information about neighbor edges, we use the only 
mutual information available: the normal at the shared vertex.  
Projected into screen space, this provides a common point to 
which both edges can connect triangle joins. We use two triangles 
because there is no way, given the limited information available in 
an edge vertex, to fill the gap between two thick lines with a 
single triangle.  
 This method of rendering line caps assumes that the projected 
vertex normal lies between the ends of the quads for adjacent lines 
and that it points towards the outside of the curve being stroked. 
Figure 5 shows a case where this assumption does not hold and 
gaps appear. When the end of a cylinder is viewed from a 
particular angle under perspective projection the vertex normals 
along the ridge point into the curve instead of out of it. The 
underlying cause is that vertex normals poorly capture the sharp 
curvature at this location; a beveled corner would not exhibit the 
same problem. The method also fails in the more rare case where 
the per-vertex normal is degenerate under projection. These 
problems do sometimes occur for creases and boundary edges; 
vertex normals, however, seem to reliably point the outside of a 
mesh at the contour edges, making them relatively immune 
regardless of curvature (see Appendix B.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.4 Rendering Silhouettes 
For a closed manifold (mesh without boundary edges), the 
silhouette between the rendered mesh and the background is a 
subset of the contour edges. The silhouette cannot be 
geometrically distinguished on the vertex processor. We therefore 
use the traditional approach: render a write mask to the stencil 
[McGuire02] or depth [Rossignack92] buffer and suppress the 
internal contour edges that are not on the silhouette with a per-
pixel test against that mask. To avoid the expense of clearing the 
stencil buffer between each mesh, we extend the stencil buffer 
method with an incrementing test value as follows.  
 Before rendering the frame, initialize a variable S to 0 and 
clear the stencil buffer to 255. For each model: 
  

  1. Set S := (S + 1) mod 255 
  2. If S == 0 then clear stencil buffer to 255 
  3. Render the model, setting stencil to S wherever 
        the depth test passes 
  4. Set the stencil test to pass where stencil == S 
  5. Render contour edges 

 
 For a scene with many objects, this reduces the number of 
times the stencil buffer must be cleared by a factor of 254. The 

 
 
Figure 5: The line capping method fails along the ridge line of 
this cylinder where the projected vertex normals are a poor 
indication of its curvature.



 
Figure 6: Brush stroke textures used to create figures 1 and 8. 
From top to bottom: cartoon fur scanned from The Lorax by Dr. 
Seuss, hand drawn watercolor stroke, charcoal from the Adobe 
Photoshop brush palette, hand drawn pen stroke. 

thin contours on the robot in figure 7c are rendered as previously 
described; thick boundary strokes on the silhouette were then 
added in a separate rendering pass with this method.  

3.5 Hidden Contours 
With this algorithm, we can also generate renderings in which 
hidden contours are rendered as dashed lines. This involves three 
passes. We first draw all models in the scene with a depth offset 
using the OpenGL glPolygonOffset command. Then for each 
hidden-contour model, we render solid contours. We then change 
the rendering style to “dashed,” invert the sense of the depth test, 
and re-render the edges; only those that are occluded will appear 
dashed. This is essentially an easy application of Appel’s 
“quantitative invisibility” idea [Appel79]. Figure 1a shows a 
mechanical part rendered with this hidden line style. 

3.6 Animating the Mesh 
So far we have discussed a static mesh with a variable model view 
transformation. The edge mesh may be animated in the same way 
that an ordinary input mesh is animated by transforming each of 
the four vertices and two normals encoded in an edge vertex. 
Input meshes are typically animated through keyframe and 
skeletal animation; we briefly describe the extension of these 
ideas to edge-meshes. 
 In hardware, the vertex stream can be composed from separate 
attribute streams as they are fed to the vertex processor. A 
common way to perform interpolated keyframe animation on the 
input meshes is to store the vertex positions for each frame in 
separate buffers and to specify the input stream as <v, v’, …> 
where v is the previous frame, v’ is the next frame, and the 
attributes not relevant to animation are not shown. A uniform 
parameter α controls the interpolation between these through a 
simple vertex program of the form posframe = MVP*[v +α (v – v’)]. 
 To extend this design to the edge mesh, we create a set of 
vertex positions and normals for each keyframe and send streams 
for the previous and next frame. The vertex processor now sees 
edge vertices of the form <v0, v1, v2, v3, n0, n1, v0’, v1’, v2’, v3’, n0’, 
n1’, r, i>, and interpolates corresponding data just as above.  
 Skeletal animation requires less data and often produces more 
desirable results. Fernando and Kilgard [Fernando03] describe 
how skeletal animation with four bone influences per vertex is 
performed on hardware using vertices of the form <v, …, M, β > 
where M is a vector of four matrices and β is a vector of 
corresponding blending weights. To implement skeletal animation 
of an edge mesh, we extend the edge vertex with four M and β 
values, one for each vertex. The vertex processor now sees edge 
vertices of the form <v0, v1, v2, v3, n0, n1, M0, M1, M2, M3, B0, B1, 
B2, B3, r, i>, where M0 and B0 are the parameters for v0 and n0, v0, 
M1 and B1 are for v1 and n1, M2 is for v2, and M3 is for v3. 
Although each vertex is large, it is within the 16-attribute limit of 
current hardware.  

 
4 Texture Parameterization 
We map textures like those in figure 6 onto the thick lines to 
produce stylized strokes. These stroke textures are designed so 
that the horizontal texture coordinate varies from 0 to 1 along the 
length of the stroke from start to finish and the vertical texture 
coordinate varies from 0 to 1 from the outside to the inside of the 
stroke. The “inside” of a stroke is the side that should lie against 
the body of an object when stroking the silhouette and the 
“outside” is the side that should lie against the background. These 
textures tile in the horizontal direction and are clamped in the 
vertical direction. 

We require a parameterization on the mesh that maps vertices 
to texture coordinates to place these textures along the strokes. A 
good parameterization minimizes texture distortion and provides 
continuous coordinates in both space and time (frame coherence). 
Previous NPR stroke methods [Markosian97; Kalnins03] were 
able to satisfy these criteria by combining adjacent edges into a 
single stroke and examining the previous frame because they 
operated on the CPU. These sorts of data are not available on the 
GPU vertex processor, so the available parameterizations are 
significantly limited. 

 We propose two parameterizations, one in object space and 
one in screen space, that are both inexpensive to compute and can 
execute on the vertex processor. Neither of our parameterizations 
is ideal. As a compromise to the lack of data available, they trade 
space continuity against time continuity. Under both, the vertical 
texture coordinate is always 0 on the outside of the stroke and 1 
on the inside, so only the horizontal texture coordinates at the start 
and end of the stroke, u0 and u1, are of interest.  
 Let s0, s1, and c be the screen space projections of object space 
vertices v0, v1, and the object space origin <0, 0, 0>. Recall that 

 

 
Figure 7: Rendering styles created by varying the contour stroke and mesh fill texture: pen and ink, charcoal, anime, and watercolor. 

a.                                 b.                               c.                                 d.               



 

 
 

Figure 8: Screen (left) and object (right) space texture 
parameterization for the bunny. The object space method 
degenerates to noise for highly tessellated models like this.

every group of four edge vertices is assigned a random scalar, r. 
We now use that value as a unique parameter for each edge. The 
object space parameterization assigns u0 = r at the start of a stroke 
and u1 = r + w|s1 – s0| at the end of a stroke, where w is the line 
width times sign(m0 • p), which is used here to maintain the aspect 
ratio of the texture and flip the texture direction as needed so that 
strokes wind in consistently around the silhouette. The strokes 
rendered with this parameterization have constant tiling frequency 
in screen space. Spatial discontinuities occur at the ends of edges, 
so this parameterization is only appropriate for meshes with large 
screen space edges like the robot in 7c or the base of the teapot in 
figure 7d, or for stroke textures with little structure where texture 
discontinuities are unlikely to be noticed, like the charcoal and 
pen strokes in figure 6. This parameterization provides excellent 
frame coherence under animation, deformation, and translation. 
Under rotation, marked, boundary, and crease edges have 
coherent parameterizations between frames but contour edges 
may experience discontinuities when the model rotates far enough 
that one contour edge is replaced with another near-by in screen 
space. 
 An alternative screen space parameterization assigns              
u = w(sy – cy) for both ends of a mostly vertical edge and assigns  
u = w(sx – cx) for both ends otherwise. A mostly vertical edge is 
one where |s1y – s0x| > |s1x – s0x|. This parameterization has spatial 
discontinuities only where horizontal and vertical edges meet. It is 
completely independent of the tessellation of the mesh and 
produces good still images—the cartoon fur in figure 1d was 
rendered with this parameterization (the interior lines are valleys 
stroked with our “pen” brush to give the bunny some detail). The 
bunny has such high tessellation that the object space 
parameterization yields only noise, as shown in figure 8.  Because 
it uses coordinates relative to the screen space projection of the 
object space origin, the screen space parameterization produces 
frame coherent results under translation perpendicular to the view 
vector. Most objects exhibit no frame coherence under 
deformation, animation, scale changes, and large rotations. 
 We find that contour edges are best rendered with half quad 
strokes where the u values map directly along the inside of a 
stroke and are stretched across both the caps and quad on the 
outside. Figure 9 demonstrates this mapping, where the on outside 
of the stroke u0 and u1 are the exterior cap texture coordinates and 
the quad texture coordinates are resolved by linear interpolation. 
 For other contours, we use the u values for both the quad 
corners and the caps, causing a single column of texture to stretch 
across the caps. This distortion is undesirable, but the alternative 
is to draw the quad in two pieces since no interpolated texture 
distortion on a single quad could texture the inside half of the 

quad from the top half of the texture and still make the quad’s 
texture line up with the caps. 
 
5 Performance 
Our complete algorithm with textures incurs about a factor-of-30 
cost over rendering the untextured, underlying mesh. There are 
two main reasons: the vertex program is long and our 
implementation lacks significant optimizations. 

Vertex programs run in time roughly linear in the number of 
instructions, but with a large performance drop at around 20 
instructions, presumably due to the architecture of today's GPUs.  
Our vertex program has about 200 instructions for the quad and an 
additional 200 for each cap. In comparison, the fixed function 
pipeline requires the equivalent of about 5 instructions. 

Our vertex program has not been optimized.  For flexibility, it 
uses many slow IF statements to enable optional rendering of 
marked edges, creases, etc., and the program is then compiled 
with a pre-release compiler and run on a vertex processor that is 
only in its second generation. 

Our goal was to move processing 100% onto the GPU by 
framing the (serial) CPU contour determination as a (parallel) per-
vertex problem. At this point parallelism can be brought to bear 
on the problem by increasing the number of vertex processors, 
which work in parallel.  As vertex processors and their compilers 
improve and the number of vertex processors increases, 
techniques like the ones we have discussed will become 
commonplace and dramatic performance gains will be available.  

That said, limited applications of our methods are suitable for 
use on today's processors, even for games, with significant hand 
optimization. Reducing the thin-line algorithm to nearly the bare 
minimum for rendering contour edges (29 instructions), we can 
render a 163,000 (visible) polygon scene (more geometry than is 
visible in most games) and its contour edges at 25 fps with 4x 
antialiasing on an NVIDIA GeForceFX 5900 Ultra card. As 
another datum, we can render 100,000 polygons at a rate of 5 fps 
for mesh and quad contour strokes, 36 fps for mesh and contour 
lines, and 250 fps for the mesh alone. 
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Figure 9: Mapping a stroke texture (top) to a half-quad stroke 
(center) and full-quad stroke (bottom). a = length of start cap, b 
= length of quad, c = length of finish cap, d = a + b + c. Other 
labels are texture coordinates at vertices. 



 
6 Discussion and Future Work 
 
Because we create thick lines in screen space, we assume that 
both ends of the line can be projected to finite screen coordinates. 
This assumption does not hold for an edge that crosses the plane   
z = 0. Although we have not done so, presumably our method can 
be extended to support edges that cross this plane by clipping 
them at the near clip plane in the vertex program. 
 We have moved edge feature determination and texturing 
from the CPU to the GPU. This unlocks the potential for higher 
performance through parallel execution but comes at a reduction 
in quality compared to previous methods. For stroke textures with 
significant structure (e.g. the Dr. Seuss texture), our screen-space 
parameterization produces reasonable results for still images but is 
barely adequate for animation. The object space parameterization 
works very well for meshes with large edges in screen space but 
produces noise for highly tessellated meshes. Our end-cap 
rendering method for thick lines fails to render creases correctly 
on models with sharp corners. The straightforward solution— 
replacing the triangle end caps with half-disks— works well for 
solid-color, opaque lines, albeit at the expense of several extra 
rendering passes to create all of the geometry. That solution is 
inappropriate for textured lines, which require a unique 
parameterization across the end caps. 
 Our methods can provide high performance and attractive 
results for rendering relatively thin or noisy lines (figures 1a, 7ab), 
fur (figure 1b), and shadows (figure 1c) and are well suited for 
interactive applications like games and CAD. More abstract 
rendering styles with thick strokes like cartoon fur (figure 1d) and 
watercolor (figure 7d) also have high performance but require 
hand tuning for each model to achieve attractive results. 
Improving these is an interesting area for future work. 
  We expect the current restrictions on GPUs to be relaxed over 
time, leading to improved edge mesh implementations. By 2005, 
there should be graphics cards available that will be able to 
perform a memory lookup (texture reference) from the vertex 
processor. This will allow a more space-efficient edge mesh 
because each vertex and normal can be stored as one integer index 
instead of three floating point numbers. The DirectX Next 
[Microsoft03] specification, with hardware anticipated in 2006, 
will allow vertices to be created and destroyed on the GPU and for 
the vertex processor to write to memory. This will eliminate the 
need for culling with clipping planes, and likely enable more 
sophisticated frame coherence for stroke textures and hysteresis 
for suggestive contours. Of course at that point the GPU will be 
very close to a general purpose processor and the history of the 
“wheel of reincarnation” suggests that it will be brought closer 
and closer to the main processor, whereupon a new “close to the 
display” graphics processor will be developed and limiting the 
bandwidth to that processor will again be relevant. 
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Appendix A: Smooth  Silhouettes and Suggestive 
Contours 
With a small modification the methods described in this paper we 
have also generated “smooth” contour edges in the style 
Hertzmann and Zorin [Hertzmann00]. These are piecewise linear 

                                                 
8 Eric Lengyel and Jed E. Lengyel really are different people, despite 
sometimes working on related subjects.  

curves that exhibit less pronounced angles than the actual contour 
edges for the silhouette of the object, making it appear more 
smooth.  

Instead of “edge-vertices” we create triangle-vertices that 
store <v0, n0, v1, n1, v2, n2, r, i>, the position and vertex-normal at 
each vertex of the triangle, the scalar used for parameterization, 
and the 0..3 index to distinguish the otherwise identical four 
vertices created for each triangle. From this data one can compute, 
for each edge of the triangle, the location p (if any) of a zero of 
the function f(p) = (p – eye) • np, where np is interpolated from the 
normals at the ends of the edge. If this function has zeros on two 
edges at points pA and pB, we  treat the line segment between those 
points as a contour and render it as previously described, with pA, 
pB, nA, and nB replacing v0, v1, n0, n1 in the edge vertex equations.9  
 

Similarly, it may be possible to approximately10 implement 
the suggestive contours of DeCarlo et al. [DeCarlo03] in 
hardware; we have done so in a software simulator to produce the 
results shown in Figure 11. (We did not do so in hardware 
because the information required per vertex, for a simple 
implementation, slightly exceeded the current hardware’s 
capacity, and compressing it is merely an exercise in space-
hacking.) Our software implementation works like this: Again for 
each triangle one generates a triangle-vertex. But the information 
at each triangle-vertex is more complex: we send three sets of 
information as before, one per vertex, but for each vertex we 
include vi, the vertex position, ni, the vertex normal, and di,1, ki,1, 
di,2, and ki,2, where di,1 is the direction of greater principle 
curvature, and ki,1 is the larger principle curvature, and di,2 and ki,2 
are the direction and value of the lesser principle curvature.  From 
this information, we can estimate the radial curvature at each 
vertex as follows (dropping all i subscripts). 

First, let e = eyePoint – v, and w = normalize(e – n (e • n)) be 
the projected “look” vector at the vertex. Then we compute the 
radial curvature at the vertex as 

  
kr, =(d1 • w)2 k1

 + (d2  • w)2 k2 
 
With these radial curvature values at each vertex, we proceed 

with the smooth-silhouette algorithm, using the radial curvatures 
rather than n • e. If all three have the same sign, we cull the 
segment by sending it behind the clipping plane. Otherwise, we 
determine the two edges, AB and AC, along which kr has zeroes.  

Along these two edges, we estimate the gradient of the radial 
curvature along edges AB and C via 

∇kAB = (kB - kA) (B – A) / ||B – A||2 
∇kAC = (kC - kA) (C – A) / ||C – A||2 
W = normalize(E – N (N • E)), 

where N is the face normal and E is a vector from the eye to either 
of the two vertices (since we’re assuming that all triangles are 
small).  

If either (∇kAB • W < 0) or (∇kAC • W < 0), then the zero-
contour runs through a valley, and we reject it. Otherwise, we 
compute and draw the zero-contour as in the smooth-silhouette 
case.  

Unfortunately, we cannot implement the hysteresis that allows 
more forgiving thresholds for edges adjacent to suggestive 
contours, which means that our suggestive contours end up 
fragmented; the fragmentation is sufficiently annoying that for the 

                                                 
9 We ignore the zero-probability event where f is zero on the entire 
triangle, although one could generate output in that case.  
10 The approximation involves assuming that the suggestive-contour-
detection function, Dw(n•v) in the notation of DeCarlo et al., is 
approximately linear over each polygon; for models with large facets this 
is a bad assumption, and the method will produce meaningless results.  

Figure 10: Suggestive-contour triangle-vertex: the locations 
and normals at each vertex are stored, along with the derivative 
of the normal at each vertex, expressed in the A0B0-coordinate 
system at v0 and in similar coordinates at each of the other 
vertices.  
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time being, this method of computing suggestive contours should 
be regarded as a curiosity rather than a practical method.  
 
 

Figure 11. Left: Contours.  Center: Suggestive Contours added 
using our method.  Right: Shading added to show the mesh. 
 
Appendix B: Projections of normal vectors. 
At the end of section 3.3, we described a method for estimating a 
normal vector to the 2D projection of a feature curve at one of its 
vertices, namely, we project the (surface) normal at the 
corresponding vertex in 3-space, but noted that this occasionally 
failed. We can analyze this failure geometrically. Let us examine 
a feature edge e that’s adjacent to a feature edge f, meeting at a 
vertex v. The unit vector e points along edge e  towards v,  and the 
unit vector f points along f but away from v. The unit outward 
surface normal at v will be denoted s, d will be a unit vector in the 
eye-to-v direction, and b will denote e × f. 

First, if e and f are collinear, then so are their projections, and 
hence the adjacent quads already meet perfectly, and the “cap” is 
redundant.  

When e and f are not collinear, there is a unique plane 
containing both. If the surface normal s lies in this plane, on the 
“convex side” of the bend, then the end-caps will join properly 
(see figure 12a).  If it lies on the concave side of the bend, they 
will not; note that this means that even in this ideal case, when the 
space-normal to a feature curve is ill-aligned with the surface 
normal (along the ridge-line of a mountain range, for instance), 
there will be problems (figure 12b). Fortunately the problems 
generally occur on the “below the surface” part of the thickened 
curve, and hence are generally invisible, unless the projected 
surface normal points to the wrong side of the front-facing 
polygon that would normally obscure the error (as in figure 5).  

Let’s analyze this a little more carefully.  

 
In Figure 13, if the lower half of the thickened line were 

below the model surface, the problem on the left would be hidden, 
as often happens in practice. In particular, for contour lines the 
view direction is tangent to the surface in the smooth case, and 
lies in the tangent cone in the polyhedral case. That means that the 
projected normal is nearly the normal (smooth case) or nearly lies 
in the normal cone (polyhedral case). Its opposite is therefore very 

likely to lie inside the surface. For other feature curves, no such 
promise can be made: the projected normal, from a near-overhead 
view, may be very nearly tangent, and its opposite may well be 
visible. The probability of this increases when the vertex is very 
non-planar, but is also large when the vertex is planar, but the 
surface “normal vector” is far from the normal to this plane. Thus 
one should expect surface features on relatively smooth areas with 
“good” normals to show relatively few cracks; on other areas, the 
probability of cracks is larger. Unfortunately, for crease lines 
cracking can be relatively likely.  

To continue the analysis, cracks can only appear when the 
projected normal lies on the “convex side” of the angle formed by 
the projection of two adjacent segments. For a random direction 
of projection, d, how likely is this? We’ll assume that the random 
direction d ranges uniformly over the hemisphere defined by d · b 
≥ 0; for each direction in the other hemisphere, the negation is in 
this one, and the projections look the same. Assuming this, the 
projection of s lies in the convex side of the angle if it lies on the 
proper sides of the planes through A whose normals are d × e and 
d × f; in particular, it’s necessary that s · (d × e) > 0 and s · (d × f) 
> 0. Using the vector identity that u · (v × w)  = det[u, v, w], we 
can rewrite these inequalities as d · (e × s) > 0 and d · (f × s) > 0. 
Each of these determines a hemi-sphere in which d must lie to 
satisfy the inequality; the intersection of these hemisphere is a 
lune, whose area is twice the angle between e × s and f × s. When 

s lies in the plane of e and f, these vectors either point the opposite 
directions, in which case their intersection is empty, or the same 
direction, in which case it’s the entire hemisphere. These 
correspond to the cases where s is in the exterior of the angle at v 
and in the interior, respectively, confirming the analysis given in 
the third paragraph of this appendix. When s does not lie in the 
plane of e and f, the vectors e × s and f × s are generally no longer 
parallel; the angle between them is (for small angles) proportional 
to the angle between s and the plane of e and f. From this, we can 
see that (at least for surfaces sufficiently nice to be treated as 
smooth), the probability that capping fails is related to (a) the 
degree to which the “normal vector” is the true normal to the 
underlying smooth surface, and (b) the geodesic curvature of the 
feature curve (i.e., the degree to which the osculating plane of the 
feature curve fails to contain the normal). For contours of smooth 
surfaces, both of these are small, and failures are unlikely; for 
ridge and valley curves, quite the opposite is true, and a reliable 
“thickening” scheme would draw “caps” on both sides of each 
joint, increasing the polygon count substantially.   
 

s 

Figure 12(a) The surface normal s lies in the plane determined 
by the two feature edges, on the convex side; “capping” will
work in this case. (b) The two darkened “ridge-line” edges form
a feature whose image-plane normal points down, while the
projection of the surface normal points up; capping will fail, but
the failure will be hidden by the surface (as shown by the dotted
quads). 
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Figure 13. At vertex A, there’s a cracking artifact because the 
projected feature edges curve towards the projected normal; at B
there is not, because the edges curve away from the projected 
normal and the grey “caps” fill in the gap appropriately.  


